
Spiking Neural P Systems

Gheorghe Păun
Romanian Academy, Bucharest,
RGNC, Sevilla University, Spain

george.paun@imar.ro, gpaun@us.es

Gh. Păun: Spiking Neural P Systems Pisa 2007 1

TOPICS:

• framework: natural computing/membrane computing

• generalities (spiking neurons)

• SN P systems

• types of results (generating/accepting numbers, languages)

• small universal systems

• handling strings and infinite sequences

• recent ideas: parallelism, asynchronous, complexity

• many problems and research topics

Gh. Păun: Spiking Neural P Systems Pisa 2007 2

FRAMEWORK: Natural computing/membrane computing

Cell

DNA
(molecules)

Evolution

Brain Neural
computing

Evolutionary
computing

DNA(molecular)
computing

Membrane
computing

Electronic media
(in silico)

Bio-media
(in vitro, in vivo?)

-

-

-

-

HHHHHHHHj

-

XXXXXXXXXXXXz

������������1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

?

?

Biology
(in vivo/vitro)

Models
(in info)

Implementation

Gh. Păun: Spiking Neural P Systems Pisa 2007 3

FRAMEWORK: Natural computing/membrane computing

Cell

DNA
(molecules)

Evolution

Brain Neural
computing

Evolutionary
computing

DNA(molecular)
computing

Membrane
computing

Electronic media
(in silico)

Bio-media
(in vitro, in vivo?)

-

-

-

-

-

HHHHHHHHj

-

XXXXXXXXXXXXz

������������1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

?

?

Biology
(in vivo/vitro)

Models
(in info)

Implementation

Gh. Păun: Spiking Neural P Systems Pisa 2007 4

MEMBRANE COMPUTING:

Goal: abstracting computing models/ideas from the structure and
functioning of living cells (and from their organization in tissues,
organs, organisms)

hence not producing models for biologists (although, this is now a tendency)

result:

• distributed, parallel computing model

• compartmentalization by means of membranes

• basic data structure: multisets (but also strings; recently, numerical variables)

Gh. Păun: Spiking Neural P Systems Pisa 2007 5

References:

• Gh. Păun, Computing with Membranes. Journal of Computer and System
Sciences, 61, 1 (2000), 108–143, and Turku Center for Computer Science-
TUCS Report No 208, 1998 (www.tucs.fi)
ISI: “fast breaking paper”, “emerging research front in CS” (2003)
http://esi-topics.com

• Gh. Păun, Membrane Computing. An Introduction, Springer, 2002

• G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds., Applications of Membrane
Computing, Springer, 2006

• Website: http://psystems.disco.unimib.it

(Yearly events: BWMC (February), WMC (summer), TAPS/WAPS (fall))

Gh. Păun: Spiking Neural P Systems Pisa 2007 6

(TYPES OF) RESULTS

• Turing completeness/universality

• polynomial solutions to hard problems (time-space trade-off)

• applications: biology, bio-medicine, economics, linguistics, computer science,
optimization

Gh. Păun: Spiking Neural P Systems Pisa 2007 7

SOFTWARE AND APPLICATIONS:

http://www.dcs.shef.ac.uk/∼marian/PSimulatorWeb/P Systems applications.htm

www.cbmc.it – PSim2.X simulator

Verona (Vincenzo Manca: vincenzo.manca@univr.it)

Sheffield (Marian Gheorghe: M.Gheorghe@dcs.shef.ac.uk)

Sevilla (Mario Pérez-Jiménez: marper@us.es)

Milano (Giancarlo Mauri: mauri@disco.unimib.it)

Nottingham, Leiden, Vienna, Evry, Iaşi

Gh. Păun: Spiking Neural P Systems Pisa 2007 8

Spiking neural P systems

1. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems, Fundamenta
Informaticae, 71 (2006)

2. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P
systems, Intern. J. Found. Computer Sci., 17 (2006).

3. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking
neural P systems, submitted, 2005.

4. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string
languages generated by spiking neural P systems, Fundamenta Informaticae, 75
(2007).

5. A. Păun, Gh. Păun: Small universal spiking neural P systems, BioSystems, 90
(2007).

6. several other papers (e.g., 4th BWMC, WMC7, WMC8)

Gh. Păun: Spiking Neural P Systems Pisa 2007 9

GENERAL REFERENCES ON SPIKING NEURAL NETS:

1. W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32–36.

2. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge,
1999.

W. Maass movie about spiking neurons:

http://www.igi.tugraz.at/tnatschl/spike trains eng.html

Gh. Păun: Spiking Neural P Systems Pisa 2007 10

#
"

!

'

&

$

%

#
"

!

'

&

$

%

#
"

!

#
"

!

#
"

!

'

&

$

%

#
"

!�

�
�

�
�

��=

?

@
@

@
@

@
@

@@R

�
�
�
�
�
��

�
�

�
�

�
��/

�
�

�
��	

@
@

@
@@R

�

@
@

@
@@R

?

l1
a → a

a → a a → a

a → a

a → a

a → a a → a

a2
→ λ

(aa)∗/a3
→ a

a → λ

a2
→ a

a → λ

r

c1 c2

c3 c4

c5
l2

l3

l1 : (SUB(r), l2, l3)

Gh. Păun: Spiking Neural P Systems Pisa 2007 11

FORMAL DEFINITION: a spiking neural P system (in short, an SN P system), of
degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules of the following two forms:

Gh. Păun: Spiking Neural P Systems Pisa 2007 12

(1) E/ac → a; d, where E is a regular expression with a the only symbol used,
c ≥ 1, and d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that as ∈ L(E) for no rule
E/ac → a; d of type (1) from Ri;

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
among neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neuron.

only out = generative system

only in = accepting system

both in, out = computing system

Gh. Păun: Spiking Neural P Systems Pisa 2007 13

Spike trains, types of output

FAMILIES: SpikgenPm(rulek, consp, forgq) – generative

SpikaccPm(rulek, consp, forgq) – accepting (DSpik, if deterministic)

Theorem 1. NFIN = SpikgenP1(rule∗, cons1, forg0) = SpikgenP2(rule∗, cons∗, forg∗).

Theorem 2. SpikgenP∗(rule2, cons3, forg3) = SpikaccP∗(rule2, cons3, forg2) = NRE.

Theorem 3. SLIN1 = SpikgenP∗(rulek, consp, forgq, bounds), for all k ≥ 3,
q ≥ 3, p ≥ 3, and s ≥ 3.

Normal forms

Gh. Păun: Spiking Neural P Systems Pisa 2007 14

PROBLEMS:

• Theorems 1, 3 for the accepting case

• Find classes of systems for which D < ND

Actually, strong determinism: L(E) ∩ L(E′) = ∅ in each neuron

• Find classes of systems for which SD < D

Automata theory observation:

state complexity of E rather reduced (only a∗, a, a2 necessary)

Gh. Păun: Spiking Neural P Systems Pisa 2007 15

Language generating:

• in the standard model: over the binary alphabet

Theorem 4. (i) There are finite languages (for instance, {0k, 10j}, for any
k ≥ 1, j ≥ 0) which cannot be generated by any SN P system, but for any
L ∈ FIN , L ⊆ B+, we have L{1} ∈ LFSNP1(rule∗, cons∗, forg0), and if
L = {x1, x2, . . . , xn}, then we also have {0i+3xi | 1 ≤ i ≤ n} ∈ LFSNP∗(rule∗,
cons1, forg0).

(ii) The family of languages generated by finite SN P systems is strictly included
in the family of regular languages over the binary alphabet, but for any regular
language L ⊆ V ∗ there is a finite SN P system Π and a morphism h : V ∗ −→ B∗

such that L = h−1(L(Π)).

(iii) LSNP∗(rule∗, cons∗, forg∗) ⊂ REC, but for every alphabet V = {a1, a2,
. . . ,ak} there are a morphism h1 : (V ∪ {b, c})∗ −→ B∗ and a projection
h2 : (V ∪ {b, c})∗ −→ V ∗ such that for each language L ⊆ V ∗, L ∈ RE, there is
an SN P system Π such that L = h2(h

−1
1 (L(Π))).

Gh. Păun: Spiking Neural P Systems Pisa 2007 16

• with extended rules (E/ac → ap; d): over any alphabet (with b0 = λ or not –
below, b0 = λ)

Theorem 5. (i) FIN = LSNeP1(rule∗, cons∗, prod∗) and this result is sharp,
because LSNeP2(rule2, cons2, prod2) contains infinite languages.

(ii) LSNeP2(rule∗, cons∗, prod∗) ⊆ REG ⊂ LSNeP3(rule∗, cons∗, prod∗); the
second inclusion is proper, because LSNeP3(rule3, cons4, prod2) contains non-
regular languages; actually, the family LSNeP3(rule3, cons6, prod4) contains
non-semilinear languages.

(iii) RE = LSNeP∗(rule∗, cons∗, prod∗).

The accepting case not considered yet

Gh. Păun: Spiking Neural P Systems Pisa 2007 17

SMALL UNIVERSAL SN P SYSTEMS

Theorem 6. There is a universal computing SN P system with standard rules
having 84 neurons, and one with extended rules which has 49 neurons.

Theorem 7. There is a universal generating SN P system with standard rules
having 76 neurons, and one with extended rules which has 50 neurons.

Korec, TCS, 1996 (plus “code optimization”)

Gh. Păun: Spiking Neural P Systems Pisa 2007 18

'

&

$

%
�
�
�
�

?

'

&

$

%
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

'

&

$

%

�
�
�
�

?

?

�
�

��	

@
@

@
@R

?

-

10g(x)−110y−11

in

Module INPUT

l0 1
a2 a2g(x) a2y

2

0 8

Register machine simulator

out

a2ϕx(y)

Module OUTPUT

. . . 10ϕx(y)−11

Figure 1: The general design of the universal SN P system

Gh. Păun: Spiking Neural P Systems Pisa 2007 19

'

&

$

%

'

&

$

%

'

&

$

%

#
"

!#
"

!

#
"

!
#
"

!
#
"

!

#
"

!

#
"

!

�
�

�
�

�
�

�
�

�
�

�
�

�
��	

��������������������

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
Ĵ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQs

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

�
�

�
�

�
�

�
��

@
@

@
@@R

@
@

@
@I

�
�

�
�� �

�
�

��	

�
�
�
�
�
�
�
�
�
�
�
�
���

A
A
A
A
AAU

�
�

�
�

���

A
A
A
A
A
A
A
A
A
A
A
A
AAU

C
C
C
C
C
C
C
C
C
C
C
CCW

�
�

�
�

�
���

?
in

a → a; 0

c1

a3
→ a; 0

c2

a3
→ a; 0

l0

a2
→ a; 0

a → λ

c3

a → a; 0

a → a; 0

c4

1 2

a2/a → a; 0

c5

c6

a2/a → a; 0

Figure 2: Module INPUT

Gh. Păun: Spiking Neural P Systems Pisa 2007 20

COMPUTING (INFINITE) STRING FUNCTIONS:

Theorem 8. Any function f : {0, 1}k −→ {0, 1} can be computed by an SN P
transducer with k input neurons (also using further 2k + 4 neurons, one being the
output one).

Example: f : {0, 1}3 −→ {0, 1} defined by

f(b1, b2, b3) = 1 iff b1 + b2 + b3 6= 2.

Gh. Păun: Spiking Neural P Systems Pisa 2007 21

'

&

$

%

'
&

$
%

'
&

$
%

'
&

$
%

'
&
$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

? ? ?

?

@
@

@
@

@
@

@
@R

C
C
C
C
C
C
C
CCW

?

@
@R

?

HHHHHHj
A
A
A
A
A
A
A
A
AU

C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�=

�
�

�
�

�
�

�
�

�
�

�
�+

����������

�

-

in1 in2 in3

a → a; 0 a → a; 0 a → a; 0

a → a; 0
a → a; 0

a → a; 0 a → a; 0

a → a; 0

a → a; 0

a → a; 0

out

a → a; 0

a2
→ a; 0

a3
→ a; 0

a4
→ λ

a5
→ a; 0

a6
→ λ

a7
→ λ

a8
→ a; 0

input

neurons

intermediate

neurons

'
&

$
%

'
&

$
%

'

&

$

%

'

&

$

%

-

�

�
�

��	

?

-

auxiliary neurons

a

a → a; 0

a

a → a; 0

a → a; 0

a → a; 0

delaying

neurons

Gh. Păun: Spiking Neural P Systems Pisa 2007 22

Computing morphisms:

• length preserving: YES (they are boolean functions)

• erasing: YES (the output is of the form wω)

• otherwise: YES if wω, NOT otherwise:

Theorem 9. Let h : {0, 1}∗ −→ {0, 1}+ be a morphism with the following two
properties:

1. |h(1)| = r ≥ 2,

2. we cannot write h(0) = ui and h(1) = uj for some u ∈ {0, 1}+ and i, j ≥ 1.

Then, there is no SN P transducer Π such that Π(w) = 0s h(w) for any given s ≥ 0
and all w ∈ {0, 1}∗ ∪ {0, 1}ω.

Gh. Păun: Spiking Neural P Systems Pisa 2007 23

However, we have (a k-block morphism is a function f : {0, 1}k −→ {0, 1}k

prolonged to a function f : {0, 1}ω −→ {0, 1}ω by

f(x1x2 . . .) = f(x1)f(x2) . . . ,

for all x1, x2, . . . ∈ {0, 1}k):

Theorem 10. If f : {0, 1}2 −→ {0, 1}2 is a 2-block morphism, then there is an SN
P transducer Π such that for all w ∈ {0, 1}ω we have Π(w) = 05f(w).

Conjecture: valid for all k

Gh. Păun: Spiking Neural P Systems Pisa 2007 24

Recent developments:

• Exhaustive use of rules: universality again (both as number generators and
acceptors; 3n for n in a register)

• Asynchronous: universality for extended rules, open for usual rules (conjecture:
not universal)

• Complexity: nondeterministic SN P systems solve NP-complete problems in
constant time, Milano theorem for a restricted case

• Astrocytes

• Packages of spikes, specified synapses, sub-universal classes, etc.

Gh. Păun: Spiking Neural P Systems Pisa 2007 25

Research topics:

• use the rules in the maximally parallel way

• complexity, solving computationally hard problems

• rules of different forms (e.g., E/an → af(n), with “easy-to-compute” partial
function f ; use when E covers the neuron, removing the maximal number of
spikes, n, for which f is defined, or rules E/a∞ → ap, meaning that all spikes are
consumed)

• inhibitory spikes, decaying time for spikes

• neural computing ingredients (learning/training, pattern recognition)

• (short/long term) memory

• applications

Gh. Păun: Spiking Neural P Systems Pisa 2007 26

Thank you!

...and please do not forget: http://psystems.disco.unimib.it

(with mirrors in China: http://bmc.hust.edu.cn/psystems,
http://bmchust.3322.org/psystems)

Gh. Păun: Spiking Neural P Systems Pisa 2007 27

